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Received 29 April 2004; received in revised form 17 August 2004
Available online 23 November 2004
Abstract

The nonlinear Eshelby problem is considered for an elastic viscoplastic inclusion. An approximate solution has been
proposed by [Molinari et al., 1997. On the self-consistent modelling of elastic–plastic behavior of polycrystals. Mech.
Mater. 26, 43–62] who have postulated a simplified interaction law. With this interaction law, the average strain rate in
the inclusion can be related to the far field loading prescribed in the matrix. In the present work, the matrix and the
inclusion have elastic-viscoplastic behavior described by a nonlinear Maxwell law. Comparisons between predictions
derived from the interaction law and finite element results are performed. It is observed that the approximate solution
is in good agreement with numerical results as far as average strain rates and stresses are considered in the inclusion.
Various inclusion shapes, material parameters and loading conditions are taken into account.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of an inclusion embedded in an infinite matrix has been treated in linear elasticity by Eshelby
(1957). In this work, the mechanical fields inside the inclusion are derived analytically. The key result is that
the deformation inside an ellipsoidal inclusion is homogeneous. For nonlinear behaviors such as for rigid
viscoplastic, elastic plastic or elastic viscoplastic materials, the deformation inside the ellipsoidal inclusion
becomes heterogeneous, and no analytical solution exists. To overcome this difficulty, several authors have
proposed a linearization of the material behavior through a secant, incremental or tangent way, see Hill
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(1965), Rice (1971), Hutchinson (1976), Molinari et al. (1987). Those models lead to the derivation of an
interaction law which links the average values of mechanical fields in the inclusion to the remote homoge-
neous loading. Thus the average strain, stress or strain rate inside the inclusion are determined in an approx-
imate way using the linear Eshelby solution. Those interaction laws combined with appropriate averaging
schemes have been widely used to determine the macroscopic behavior of heterogeneous materials.

Few studies have been performed to validate the proposed approximate interaction laws. For viscoplas-
tic materials, Molinari et al. (1987). have developed a tangent interaction law based on an affine lineariza-
tion of the matrix behavior. Combined with a self-consistent scheme, the authors are able to predict the
macroscopic behavior of polycrystalline aggregate and texture evolutions. To prove the accuracy of the
proposed interaction law, Molinari et al. (2004). compared the predictions of the average strain rate inside
the inclusion to values obtained by Gilormini and Germain (1987) and Gilormini and Michel (1999) with
Finite Element. The matrix and the inclusion have both rigid viscoplastic behavior. The effective stress is
linked to the effective strain rate through a powerlaw. A good agreement is observed for various inclusion
shapes and loading conditions. As a consequence, the interaction law proposed by Molinari et al. (1987) in
association with an appropriate averaging scheme can be useful to simulate the macroscopic behavior of
heterogeneous material in the viscoplastic domain.

Since micromechanical viscoplastic models are efficient, the next challenge is to deal with elastic-visco-
plastic heterogeneous materials. The main problem with this behavior has been illustrated by Suquet
(1985). The author considers an aggregate of incompressible linear viscoelastic phases whose behaviors
are represented by a Maxwell law. The macroscopic behavior of the aggregate does not follow a Maxwell
law. As a consequence, the type (or the mathematical description) of the macroscopic behavior is not
known a priori, which leads to a strong difficulty in micromechanics. Exact solutions, even with linear
behavior, are difficult to obtain. One can mention at least two exceptions: Hashin (1969) obtained an ana-
lytical solution of the inclusion problem in linear incompressible viscoelasticity giving the homogeneous
strain inside the inclusion as a function of the remote loading. Calculations are done using Laplace trans-
form and the correspondence principle. Using also Laplace transform technique, Rougier et al. (1993) have
derived an analytical solution for the macroscopic behavior of a two phase incompressible linear viscoelas-
tic material. A self-consistent scheme is adopted for the averaging process. Since the resolution in the La-
place space is fruitful in linear viscoelasticity, some authors have tried to extend the mathematical tool to
nonlinear behaviors. Masson and Zaoui (1999) have proposed a homogeneization scheme for elastic-visco-
plastic materials. After linearization of the problem, they use Laplace transform technique and solve a sym-
bolic problem in the Laplace space. The inverse transform to the time space is performed numerically with a
collocation technique, see Schapery (1962). The proposed method has a high computational time-cost.
Moreover, Laplace technique is only exact for nonageing linear visco-elastic behavior. In the nonlinear
range where material parameters are time evolving, this induces approximations which are difficult to quan-
tify. To avoid these drawbacks, several authors have proposed approximated interaction laws for nonlinear
elastic-viscoplastic materials, Kouddane et al. (1993), Turner et al. (1994), Molinari et al. (1997), Paquin
et al. (1999), Molinari (2002), Sabar et al. (2002).

The aim of the present work is to validate the interaction law proposed initially by Kouddane et al.
(1993) for isotropic behavior and generalized by Molinari et al. (1997) and Molinari (2002). The material
behavior is elastic-viscoplastic. The interaction law is presented in a general form. For the special case of an
isotropic incompressible linear viscoelastic behavior, the results obtained with the proposed interaction law
coincide with the analytical solution of the inclusion problem obtained by Hashin (1969). In the following
of the paper the inclusion problem is modelled using the Finite Element software Abaqus and a detailed
comparison is made with the predictions of the proposed interaction law. A power law is adopted to rep-
resent the nonlinear viscous flow of both phases and isotropic elasticity is assumed. Various inclusion
shapes and loading conditions are considered. Material parameters are also varied in a large range. Results
are presented for incompressible and for compressible elasticity.
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2. Interaction law for elastic-viscoplastic materials

2.1. Position of the problem

Consider an inclusion embedded into an infinite matrix. Both phases have nonlinear elastic-viscoplastic
behaviors. A small deformation theory is adopted. The total strain rate tensor d is split into an elastic part
d e and a viscoplastic part d vp.
Fig. 1.
have u
d ¼ de þ dvp ð1Þ

The elastic part is linked to the rate of the Cauchy stress tensor _r by the incremental elastic law:
de ¼ ðaeÞ�1 : _r ð2Þ
where ae is the fourth order tensor of elastic moduli. The viscoplastic contribution dvp, assumed volume
preserving, is related to the deviatoric Cauchy stress tensor s by
dvp ¼ of
os

ðsÞ or s ¼ og
od

ðdvpÞ ð3Þ
where f and g are stress or strain rate potentials respectively.
An homogeneous macroscopic strain rate D is prescribed at the remote boundary of the matrix (see Fig.

1) and induces an homogeneous Cauchy stress tensor R (S is the associated deviatoric Cauchy Stress) and
an homogeneous Cauchy stress rate tensor _R. Those quantities are the macroscopic mechanical fields pres-
ent in the matrix far from the inclusion (the matrix is infinite). R, _R and D are linked together by the elastic-
viscoplastic behavior of the matrix. Let us denote ri, _ri and di the average values of the Cauchy stress
tensor, rate of Cauchy stress tensor and strain rate tensor in the inclusion; si and _si are the deviatoric stress
and stress rate.

Molinari et al. (1997) and Molinari (2002) have postulated the following interaction law:
di � D ¼ ðAtg � ðP tgÞ�1Þ�1
: ðsi � SÞ þ ðAe � ðP eÞ�1Þ�1

: ð _ri � _RÞ ð4Þ
where Ae stands for the fourth order tensor of the matrix elastic moduli. Atg is the tensor of tangent visco-
plastic moduli of the matrix, which is obtained using the viscoplastic flow law (3). Nonlinear viscoplastic
behaviors are considered in the present work, therefore Atg is depending on the macroscopic viscoplastic
strain rate Dvp. The tensor Ptg (respectively Pe) is calculated with use of Green functions related to Atg

(respectively Ae). These two tensors are computed by integrating the derivative of the Green functions over
the inclusion volume. For more details, one may refer to Molinari (2002).

To better understand the construction of the postulated interaction law (4), let us consider a heteroge-
neous medium, initially at rest, sustaining a constant overall strain rate for time t > 0. In the initial stage of
di σ  σi     i
.inclusion
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Σ Σ

.

D

Schematic representation of the inclusion problem. The matrix is infinite and the inclusion has an ellipsoidal shape. Both phases
niform elastic-viscoplastic properties. An homogeneous strain rate tensor D is applied at the remote boundary of the matrix.
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the loading, the stresses inside the phases are relatively small with important stress rates. Thus, the first term
in the right hand side of Eq. (4) is small. The interaction law reduces to the one associated to a pure incre-
mental elastic response and the classical result obtained by Eshelby (1957) in linear elasticity is retrieved.
When the transient regime is over, stress rates inside the medium are vanishing. The postulated interaction
law (4) reduces to the first two terms corresponding to the pure viscoplastic interaction law which has been
validated by Molinari et al. (2004). The simple interaction law (4) has been postulated so as to contain the
initial elastic response and also the long term viscoplastic response.

2.2. Comparison with the analytical solution proposed by Hashin (1969)

Here, we consider the case of linear viscoelasticity. The matrix and the inclusion have a local incompress-
ible isotropic viscoelastic behavior described by the following Maxwell laws:
di ¼
_si
2li

þ si
2gi

dm ¼ _sm
2lm

þ sm
2gm

ð5Þ
where li and lm are the elastic shear moduli, gi and gm are the viscous moduli for the inclusion and the
matrix respectively. An homogeneous strain rate D is prescribed at the boundary of the infinite domain
and corresponds to the strain rate tensor in the matrix far from the inclusion. Thus D, S and _S are linked
by the matrix behavior
D ¼
_S

2lm
þ S
2gm

ð6Þ
Using Eqs. (5) and (6), the interaction law (4) reduces to:
di � D ¼ � si � S
3gm

� _si � _S
3lm

ð7Þ
Kouddane et al. (1993) have mentioned that Eq. (7) coincides with the analytical solution obtained by
Hashin (1969) (see Appendix A). This means that the interaction law (4) is exact for this simple case.

Eq. (7) can be written in a different form so as to introduce the viscoplastic strain rates dvp
i and Dvp:
dvp
i ¼ si

2gi
Dvp ¼ Sm

2gm
ð8Þ
This gives:
_si ¼
5li

2li þ 3lm

_S � 2lm
2gi þ 3gm

5gm
dvp
i � Dvp

� �� �
ð9Þ
With this new formulation, it is clear that the initial elastic and the long term viscoplastic strain rates are
exactly evaluated. Indeed, in the initial elastic stage, dvp

i and Dvp vanish and (9) provides the usual locali-
zation law for incompressible elasticity. For the long range viscoplastic stage where the stress rates vanish,
(9) provides the localization law for the viscoplastic strain rates. Note that the interaction law proposed by
Paquin et al. (1999) gives the same results and therefore is exact in this simple case. For comparison pur-
pose, the interaction law proposed by Weng (1982):
_si ¼
5li

2li þ 3lm

_S � 2lmð1� bÞ dvp
i � Dvp

� �� �
ð10Þ
and the one proposed by Sabar et al. (2002):
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Fig. 2. Time evolution of the equivalent plastic strain rate inside the spherical inclusion. The remote loading corresponds to uniaxial
tension D11 = 1s�1. The two phases have incompressible isotropic viscoelastic behavior described by a Maxwell law. The following
parameters are used: li = lm = 66.66MPa and gi = 0.66MPas�1, gm = 0.33MPas�1. The interaction law proposed by Molinari et al.
(1997) coincides with the analytical solution obtained by Hashin (1969). Models proposed by Weng (1982) and Sabar et al. (2002) do
not represent exactly this simple configuration.
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_si ¼
5li

2li þ 3lm

_S � 2lmð1� bÞ dvp
i � 5gm

2gi þ 3gm
Dvp

� �� �
ð11Þ
are presented. For incompressible elastic behavior, b ¼ 2
5
. One can observe that these relationships do not

coincide with the exact result (9). The difference is illustrated on Fig. 2, which shows the time evolution of
the equivalent plastic strain rate in the inclusion for the three interaction laws. The applied strain rate D at
the remote boundary corresponds to uniaxial traction.
D ¼ D0

1 0 0

0 �0:5 0

0 0 �0:5

2
64

3
75 ð12Þ
The material parameters are: li = lm = 66.66MPa, gi = 0.66MPas�1 and gm = 0.33MPas�1. D0 = 1s�1.
The predictions of the three interaction laws are compared to the analytical solution, Hashin (1969). As
already mentioned, the results provided by Eq. (9) coincides with the exact solution. The model proposed
by Sabar et al. (2002) does not capture exactly the evolution of the strain rate for intermediate times when
the viscoelastic coupling occurs. As already noticed in the literature, the model proposed by Weng (1982) is
too stiff since interactions are mostly driven by elasticity.
3. Numerical modelling

When the behavior is nonlinear, there is no analytical solution of the inclusion problem. Therefore, finite
element calculations have to be performed for comparison purpose. In the present work, the software ABA-
QUS is used. Geometric nonlinearity are disregarded since a small deformation formalism has been
adopted.
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Three different loading conditions have been tested. First, the strain rate loading corresponds to uniaxial
tension, Eq. (12). Axisymmetric conditions are prescribed since only axisymmetric inclusions are considered
in the present work (see Fig. 3). The axes of the inclusion and the loading directions are aligned. To ap-
proach the infinite extent of the matrix, a large dimension is adopted for the matrix, corresponding to thirty
five times the inclusion size. The volume fraction of a spherical inclusion is 1

42857
. Note that a smaller domain

corresponding to ten times the inclusion size is sufficient to get accurate results in axisymmetric loading. In
that case, the volume fraction would have been 1

1000
. The material behavior is nonlinear, therefore deforma-

tion heterogeneity occurs inside the inclusion and increases when the nonlinear material response is more
pronounced. Material parameters of the two phases (matrix and inclusion) can be strongly different. Impor-
tant gradients can be observed near the matrix-inclusion interface. For these two reasons, the matrix and
the inclusion are meshed in two parts. For the matrix, the mesh is very dense near the interface and is coarse
far from the inclusion since the effect of the inclusion is vanishing, see Fig. 4. The mesh has a high density in
the inclusion to capture the deformation heterogeneity. Note the refinement near the interface to deal with
strong strain gradient, see Fig. 4. Table 1 summarizes the number of elements adopted for the four part
mesh in the case of spherical inclusions. Different inclusion shapes are considered: spherical, oblate (aspect
ratio k = 2) and prolate (aspect ratio k = 0.5). The corresponding meshes are presented only for spherical
inclusions.

Several types of elements available in ABAQUS library have been tested: 4-node bilinear and 8-node
quadratic elements with full or reduced integration. In all cases, results are identical. Therefore, 4-node
bilinear elements with reduced integration (named CAX4R) are adopted. When incompressible elasticity
is considered, elements with hybrid formulation (CAX4RH) are used.

A second configuration is proposed to validate the interaction law. The problem of a cylindrical inclu-
sion of axis 3 embedded in an infinite matrix is simulated in plane strain conditions, see Fig. 3. The remote
loading is:
Fig. 3
tensor
remote
D ¼
1 0 0

0 �1 0

0 0 0

2
64

3
75ðs�1Þ: ð13Þ
Only a circular cross-section has been tested. To approach the infinite extent of the matrix, the inclusion is
embedded into a cylinder of radius thirty five times the inclusion radius. The volume fraction of inclusion is
1

2

1

2

a
b

> 1, b=c

a
b

< 1, b=c

a

c

3

b

cylinder cross-section

Axisymmetric problem for
    ellipsoidal inclusions

oblate inclusion

prolate inclusion

Plane strain problem

. Axes of the ellipsoidal inclusion are aligned with loading directions. The inclusion is axisymmetric. The remote strain rate
Eq. (12) corresponds to uniaxial tension. In plane strain condition, a circular cylinder is embedded into an infinite matrix. The
strain rate is D11 = 1s�1, D22 = �1s�1.



Fig. 4. View of the mesh in the inclusion and in the matrix. The mesh is dense inside the inclusion and near the interface. A coarse mesh
is adopted in the matrix far from the inclusion.

Table 1
Number of elements in the inclusion and in the matrix for a spherical inclusion. The same number of elements is adopted for different
loading conditions (axisymmetric traction or plane strain loading)

Spherical inclusion Number of elements
in the inclusion

Number of elements
in the matrix

Number of elements in the
whole domain

Total 1231 2024 3255
Near the interface 704 704
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ð 1
1225

Þ. Larger domain size increases the calculation time but does not improve the accuracy of the results.
From the calculations, one can observe that results are accurate as soon as the volume fraction of inclusion
is below 1

1000
. The mesh of Fig. 4 is adopted (see Table 1). For the prescribed loading, 4-node bilinear plane

strain elements with reduced integration (named CPE4R) are used.
Finally, complex loadings are tested in plane strain conditions. The path corresponds to plane strain

traction as in (13) followed by shear. The corresponding remote shear strain rate tensor is:
D ¼
0 1 0

1 0 0

0 0 0

2
64

3
75ðs�1Þ: ð14Þ
Since shear deformation does not preserve the symmetry with respect to axes 1 and 2, the whole domain has
been meshed. The mesh is similar to Fig. 4, covering the whole cross-section and not only one fourth of the
domain. For the proposed complex loading, in order to avoid hourglassing, fully integrated elements
(named CPE4H) are used.
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4. Results

In the present work, the inclusion and the matrix behaviors are described by relationships (1)–(3). The
viscoplastic response (3) obeys to the J2 flow law:
req ¼ rpðdeqÞmp ; sij ¼ 2gpðdeqÞdvp
ij with gpðdeqÞ ¼ rp

3
ðdeqÞmp�1 ð15Þ
gp(d
eq) stands for the nonlinear viscosity of the material, deq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
dvp : dvp

q
is the equivalent plastic strain

rate and req ¼
ffiffiffiffiffiffiffiffiffiffiffi
3
2
s : s

q
is the equivalent Cauchy stress. The scalars mp and rp characterize the strain rate

sensitivity and the strength of the phase (p). The elastic contribution (2) is assumed isotropic, Ep and mp
are the Young�s modulus and the Poisson�s ratio respectively. The material behavior is described by a
set of four parameters (mp, rp, Ep and mp). For incompressible elasticity, the elastic behavior is characterized
by the sole shear modulus lp ¼

Ep

3
. The behavior of both phases is described by Eq. (5), where gi and gm are

rate dependent and given by (15) with p = i for the inclusion and p = m for the matrix.
ABAQUS accounts for elastic-viscoplastic behavior of the form:
req ¼ rpðdeq þ dopÞmp ð16Þ

where dop is a strain rate threshold which we shall take as very small (dop = 10�20 s�1 for mp = 0.2).
Although the viscoplastic flow is described here by the nonNewtonian law (15), it is worth noting that
the interaction law (4) applies for a general viscoplastic flow law of the form (3).
4.1. Axisymmetric traction

The aspect ratio of the inclusion is defined by k ¼ a
b (see Fig. 3). The components of the macroscopic

strain rate at the remote boundary is given by (12) with D0 = 1s�1. From Eqs. (1)–(3) and (15), the time
evolution of the average value of the strain rate inside the inclusion can be determined by using the inter-
action law (4). Finite element calculations performed on the same configuration provide the local strain rate
inside the inclusion, which is nonuniform for nonlinear behaviors. Thus, a comparison between mechanical
fields calculated by the interaction law (4) and the average, maximum and minimum fields obtained by FE
is proposed. The average value of the equivalent plastic strain rate is defined as
hdeq
FEi ¼

1

X

Z
X
deq dX ð17Þ
where X is the volume of the inclusion. The subscript ‘‘FE’’ refers to Finite Element results.
4.1.1. Incompressible elasticity
4.1.1.1. Spherical inclusion. As stated in Appendix A, results obtained via the interaction law coincide with
the analytical solution when the linear behavior mi = mm = 1 is considered, so does also the FE calcula-
tions. Results are not presented here.

In the following calculations, we have arbitrary chosen: rm = 1IS (International System Units) and
Ei = Em = 200MPa (thus for incompressible elasticity, li = lm = 66.66MPa). In Fig. 5, a low strain rate
sensitivity mi = mm = m = 0.05 and a strong strength difference ri = 0.1rm are considered. It is observed
that the average viscoplastic and total strain rates inside the inclusion based on the relationship (4) are get-
ting close to the FE results. Note that a closer agreement would be obtained for a larger strain rate sensi-
tivity m, all other parameters being fixed. By comparing Fig. 5(a) and (b), it is observed that the long term
response is purely viscoplastic. Results obtained by Molinari et al. (2004) using the rigid viscoplastic inter-
action law (no elasticity) are retrieved. Since Molinari et al. (2004) have concluded that for rigid viscoplastic
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Fig. 5. Time evolution of the equivalent plastic and total strain rate in a soft spherical inclusion. Predictions based on the interaction
law (4) are compared with FE simulations. The loading is axisymmetric and corresponds to uniaxial traction. Inclusion and matrix are
incompressible with same elastic behavior. The following material and loading parameters are used: m = 0.05, l = 66.66MPa, rm = 1
IS, ri = 0.1rm, D0 = 1s�1.
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materials the interaction law is able to capture the mean strain rate inside the inclusion, it is clear that pre-
dictions based on relationship (4) will be close to FE results for large times when elastic strain rates vanish.
The matrix being harder than the inclusion, the matrix remains elastic at the beginning of the loading. The
inclusion is initially strained in the elastic domain but rapidly the elastic response is replaced by the elastic-
viscoplastic one, see Fig. 5(a) and (b). This stage of the deformation process is represented by the first
plateau in Fig. 5 with level of the equivalent plastic and total strain rates equal to 5

3
. This level represents

the classical equivalent strain rate in a void when the matrix remains elastic, the equivalent strain rate at the
remote boundary of the matrix being unity. In the present example, the inclusion is much softer than
the matrix and behaves as a void. On the plateau, the inclusion deforms in the viscoplastic domain and
the equivalent plastic and total strain rates must reach the specific value 5

3
. This interesting case is perfectly

predicted by the interaction law (4) and coincides with FE results. Except for the transient stage corre-
sponding to the matrix transition from elastic to viscoplastic, the average value of the plastic and total
strain rates inside the inclusion are accurately predicted.

When the inclusion is harder than the matrix (ri = 10rm) and for m = 0.5, Fig. 6 shows that the average
plastic strain rate in the inclusion calculated with the interaction law (4) is in reasonable agreement with the
average value obtained by FE. The prediction based on the interaction law (4) is close to the maximum
value of the equivalent strain rate calculated by ABAQUS. A maximum error of five percent occurs during
the long range viscoplastic response. This result has already been obtained by Molinari et al. (2004). To
reduce the discrepancy, Molinari and Toth (1994) have proposed to introduce in the interaction law a tun-
ing parameter calibrated with use of FE calculations.

In Fig. 7, strain rate sensitivities for the two phases are different mi = 0.05 and mm = 0.2. The inclusion is
softer than the matrix ri = 0.5rm. The average value of the equivalent plastic strain rate given by the inter-
action law (4) is very similar to the average value calculated with ABAQUS.

All the previous calculations were performed with the same elastic behavior. Fig. 8 shows comparisons
when the elastic moduli of the phases are different. The spherical inclusion is harder than the matrix
ri = 1.5rm. Identical strain rate sensitivities are considered m = 0.2. In Fig. 8(a), the elastic modulus of
the inclusion is ten times larger than the elastic modulus of the matrix, li = 10lm with lm = 66.66MPa.
In Fig. 8(b), the elastic moduli of the phases are: li = 0.1lm, lm = 66.66MPa. It is observed that the
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predictions obtained with the interaction law (4) are in agreement with the average value obtained by FE
simulations, even at intermediate times where elastic behavior plays a crucial role. The response for large
times is identical in Fig. 8(a) and (b) since the long term response is viscoplastic (vanishing elastic strain
rate). As a consequence, we can argue that the interaction law (4) provides reasonable predictions for het-
erogeneous elastic properties.
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Fig. 9. presents the time evolution of the flow stress req in the inclusion for the configuration of Fig. 6.
Differences between stress predictions derived from the interaction law and FE calculations are less pro-
nounced than plastic strain rate differences, see Fig. 6. This is due to the fact that the strain rate sensitivity
has lower value than unity in the flow law.

To summarize, for soft inclusion, differences occurs mainly at intermediate times when the matrix starts
to plastify. For hard inclusion, differences are observed mostly for large times, when viscoplastic strain rate
is dominant with respect to elastic strain rate.
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Fig. 10. Time evolution of the equivalent plastic strain rate in a hard spherical inclusion. Uniaxial traction-compression is prescribed
at the remote boundary. Inclusion and matrix are incompressible with the same elastic behavior. The following material and loading
parameters are used: m = 0.2, l = 66.66MPa, rm = 1IS, ri = 1.5rm.
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4.1.1.2. Cyclic loading. The inclusion is harder than the matrix (ri = 1.5rm) with same strain rate sensitivity
m = 0.2. Both phases have the same incompressible elastic behavior defined by l = 66.66MPa. Cyclic load-
ing is prescribed at the remote boundary. The cycle is defined as follows: for time up to t = 0.03s, the far
field strain rate tensor is defined by (12) with D0 = 1s�1. For time in the range [0.03s,0.06s], the reverse
loading corresponding to axisymmetric compression with D0 = �1s�1 is considered. In Fig. 10, the time
evolution of the equivalent plastic strain rate is presented for two cycles. As for monotonic loading, good
results are obtained for cyclic loading with the interaction law (4). Note that for time larger than t = 0.12s,
the loading has been relaxed by taking the far field strain rate equal to zero.

4.1.1.3. Prolate and oblate inclusions. To validate the interaction law (4), comparisons were also performed
for oblate and prolate inclusions. An oblate ellipsoidal inclusion (aspect ratio k = 2) is first considered. In
Fig. 11, the inclusion is softer than the matrix (ri = 0.5rm). The strain rate sensitivity of the two phases is
m = 0.05. As for spherical inclusions, the predictions of the interaction law and those of FE calculations coin-
cide at the beginning of the loading and are in close agreement for large times when the deformation of both
phases is purely viscoplastic (negligible elastic strain rate). At intermediate times, a difference exists. Next, an
hard prolate ellipsoidal inclusion (aspect ratio k = 0.5, ri = 1.5rm) is considered. The strain rate sensitivity is
identical for both phases and equal tom = 0.2. The results obtained with the two approaches (interaction law
and FE) are quite similar, see Fig. 12. As for spherical inclusions and from other simulations not presented
here, one can observe that the difference between predictions of the interaction law (4) and the average values
obtained by FE calculations, increases with large strength ratio and with small strain rate sensitivity.

4.1.2. Compressible elasticity
In Fig. 13, the two phases have the same elastic behavior defined by E = 200MPa, m = 0.3. Other param-

eters are identical to those of Fig. 7. It is observed that the quality of predictions is preserved when com-
pressible elasticity is considered. Others results for compressible elasticity are not presented since
conclusions and observations drawn for incompressible elasticity are still valid.
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4.2. Plane strain

4.2.1. Monotonic loading

A second configuration is presented to validate the interaction law (4). A cylindrical inclusion of axis 3 is
embedded into an infinite matrix (see Fig. 3) and deformed in plane strain conditions. The strain rate tensor
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applied at the remote boundary is given by (13). To approach the cylindrical inclusion, an oblate ellipsoidal
inclusion with a large aspect ratio c/a = 100,a = b is considered, see Fig. 3. The average value of the equiv-
alent plastic strain rate inside the inclusion is defined as
Fig. 14
large c

a
behavi
hdeq
FEi ¼

1

S

Z
S
deq dS ð18Þ
where S is the cross-section of the circular cylinder.
time (s)

eq
ui

va
le

nt
pl

as
tic

st
ra

in
ra

te
(1

/s
)

0 0.01 0.02 0.03 0.04 0.05
0

0.01

0.02

0.03

0.04

cylinder, σi /σm=10, m=0.5

. Evolution of the equivalent plastic strain rate in a hard elongated inclusion (simulating a circular cylinder). The aspect ratio is
¼ 100; a ¼ b. Plane strain traction is applied at the remote boundary. Both phases have the same incompressible elastic
or. The following material parameters are used: m = 0.5, l = 66.66MPa, rm = 1IS, ri = 10rm.



time (s)

eq
u

iv
al

en
tp

la
st

ic
st

ra
in

ra
te

(1
/s

)

0 0.005 0.01 0.015 0.02
0

1

2

3

4

5

6

7

8

9

10

11

12

cylinder, σi /σm=0.1, m=0.05

average, matrix

Fig. 15. Evolution of the equivalent plastic strain rate in a soft elongated inclusion (simulating a circular cylinder). The aspect ratio is
large c

a ¼ 100; a ¼ b. Plane strain traction is applied at the remote boundary. Both phases have the same incompressible elastic
behavior. The following material parameters are used: m = 0.05, l = 66.66MPa, rm = 1IS, ri = 0.1rm.

S. Mercier et al. / International Journal of Solids and Structures 42 (2005) 1923–1941 1937
For m = 1, the two approaches coincide at any time. Thus, the difference between the viscoplastic inter-
action law and FE results of Gilormini and Germain (1987) mentioned by Molinari et al. (2004) for linear
viscosity is really due to inaccuracy in the FE calculations (inaccuracy only observed for soft inclusions).

In the present paper, only two configurations are presented. The elastic behavior is assumed incompress-
ible with li = lm = 66.66MPa. The strength of the matrix is rm = 1IS. The inclusion is taken harder than
the matrix ri = 10rm. The strain rate sensitivity is identical for both inclusion and matrix m = 0.5. A very
good agreement between the two approaches is observed in Fig. 14. The last case concerns a soft inclusion
ri = 0.1rm (Fig. 15). A low strain rate sensitivity is adopted m = 0.05. As for spherical inclusions in axisym-
metric loading, the prediction of the interaction law is in close agreement with FE results, except at inter-
mediate times during the matrix transition from elastic to plastic regime.

4.2.2. Complex loading

Nonmonotonic loadings are now considered. Far field tensile loading is prescribed as in (13) during a
time t = 0.03s and is replaced by shear loading (14) later in the deformation process. This shear loading
breaks the symmetry with respect to axes 1 and 2 and the whole domain of the cross-section has to be
meshed. The elastic behavior of the two phases is assumed incompressible with li = lm = 66.66MPa.
The strength of the matrix is rm = 1IS. The inclusion is harder than the matrix ri = 1.5rm. The strain rate
sensitivity is identical for the two phases m = 0.2. In Figs. 16 and 17, the time evolution of respectively the
total, plastic and elastic strain rate components are presented. A comparison between predictions based on
the interaction law (4) and FE results is proposed for the total and the plastic strain rate. Fig. 18 shows a
very good agreement for deviatoric stress components s11 and s12. The evolution of the elastic strain rate de

11

is also well predicted by the interaction law, even if FE results are not presented on Figs. 16 and 17 to gain
in clarity. The beginning of the tensile loading is purely elastic with de

11 ¼ 1s�1. This value is expected since
both phases have the same elastic behavior. As time increases, a balance between elastic and viscoplastic
deformation occurs. Later in the traction process, the deformation is purely viscoplastic with vanishing
elastic deformation. At time t = 0.03s, shear loading replaces tensile loading. A jump in the elastic strain
rate component de

11 from 0s�1 to �1s�1 is observed. The elastic shear strain rate component de
12 reaches
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instantaneously the value de
12 ¼ 1s�1. Due to the elastic accomodation of the two phases, the viscoplastic

strain rate component dvp
11 and the deviatoric stress component s11 are continuous and decrease slowly. They

vanish at time t = 0.06s. On the contrary, the viscoplastic shear strain rate dvp
12 and the deviatoric stress s12

increase monotonically and reach a plateau at time t = 0.05s. Several tests have been performed with
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different hardness ratio and different strain rate sensitivities. When heterogeneity between the phases in-
creases, the accuracy of the predictions based on the interaction law (4) decreases but remains good.
5. Conclusion

The aim of the present work was to validate an interaction law proposed by Molinari et al. (1997) for the
Eshelby problem with elastic-viscoplastic materials. In the present approach, inclusion and matrix have
elastic viscoplastic Maxwell behavior defined by relationships (1)–(3). The analytical solution of Hashin
(1969) is retrieved when the behavior is linear and incompressible and when the inclusion is spherical. In
the nonlinear domain, deformation heterogeneity within the inclusion has been quantified with FE simula-
tions considering various inclusion shapes and different values of material parameters. Monotonic deforma-
tion paths such as axisymmetric tension, plane strain traction and nonmonotonic deformation pathes
(tension-compression or tension-shear) have been considered. Elastic accomodation due to direction
change in the deformation path is accurately predicted. It has been shown that, in general, the equivalent
plastic strain rate in the inclusion predicted by the interaction law (4) is in good agreement with the average
value derived from FE calculations (ABAQUS software). For soft inclusions, at initial and large times, the
predictions are close to FE results. A difference is observed at intermediate times when the matrix under-
goes a change from elastic to plastic regime. For hard inclusions, the difference reaches a maximum for
large times i.e. during the viscoplastic domain when elastic strain rates are negligible. The results at large
times match those obtained with the tangent interaction law for rigid viscoplasticity (elasticity neglected)
proposed by Molinari et al. (1987). This simplified law offers an appropriate way to describe the response
of an inclusion and has been widely used for simulations of texture evolutions in polycristalline materials.

In the present paper, time evolution of the average equivalent plastic strain rate inside the inclusion is
shown for various configurations. Comparisons concerning other quantities such as the total strain rate,
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the equivalent von Mises stress have been presented in Figs. 5(b) and 9 and similar conclusions can be
drawn in general.

The present work demonstrates that elastic deformation can be included in a simple way in a realistic
interaction law as expressed in (4). This law, which offers a good compromise between quality of results
and computation time, is useful for the micromechanical modelling of elastic-viscoplastic heterogeneous
materials. The information given by the interaction law is restricted to the first order moment of the elastic
and viscoplastic strain rate per phase (volume averages). An open problem is still to find a way of estimat-
ing higher order moments so as to address the problem of strain heterogeneity per phase.
Appendix A. Equivalence of Eq. (7) with the analytical solution of Hashin (1969)

Matrix and inclusion are governed here by a linear Maxwell response. Introduction of Eqs. (5) and (6)
into Eq. (7) in order to eliminate di, S and _S leads to:
_si
3

2li
þ 1

lm

� �
þ si

3

2gi
þ 1

gm

� �
¼ 5D ðA:1Þ
where D (respectively di) is the time derivative of the strain tensor E (respectively �i) since a small deforma-
tion theory is adopted. The Laplace transform of Eq. (A.1) provides the following relationship:
ŝiðpÞ
3p
2li

þ p
lm

þ 3

2gi
þ 1

gm

� �
¼ 5pÊðpÞ ðA:2Þ
where p is the Laplace variable and ð̂:Þ is the Laplace transform of the function (.).
The inclusion and matrix responses (5) are expressed in the Laplace space:
ŝiðpÞ ¼ 2l̂iðpÞ�̂iðpÞ ŝmðpÞ ¼ 2l̂mðpÞ�̂mðpÞ ðA:3Þ

where
l̂iðpÞ ¼
gip

1þ gi
li
p

and l̂mðpÞ ¼
gmp

1þ gm
lm
p

ðA:4Þ
The introduction of Eq. (A.3) into Eq. (A.2) gives:
�̂iðpÞ ¼
5l̂mðpÞ

3l̂mðpÞ þ 2l̂iðpÞ
ÊðpÞ ðA:5Þ
The analytical solution in the Laplace space of the Eshelby problem is retrieved, Hashin (1969).
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